Отныне стало возможно не просто стать обладателем полезного знания, но сформулировать неопровержимую истину, причем такую, что любой скептик мог сам внимательно проверить доказательство и убедиться в его верности. Вся греческая геометрия являет собой постепенное утверждение дедуктивного метода. Его эффективность в деле получения новых математических фактов оказалась столь высока, что философы не смогли устоять перед искушением и распространили дедукцию на все области знания. Сильнее прочих на этом поприще отличился Аристотель.

<p>Формальная логика</p>

Период расцвета средневековых университетов знаменовал триумф аристотелизма как величайшей философской системы. Наступление эпохи Возрождения подорвало позиции Аристотеля-метафизика, но его авторитет в области логики оставался непререкаемым. Даже сегодня многие полагают, что по этому вопросу уже сказано более чем достаточно: ведь не просто же так Аристотеля часто называют «отцом логики». Тут, впрочем, нужно сделать ряд разъяснений.

Начать следует с того, что у Аристотеля нет труда с названием «Логика», такое слово было неизвестно философу, поскольку появилось лишь в эллинистическо-римские времена. Сам Аристотель использовал термин «аналитика» — расчленение суждений. Причем основы этой аналитики (категории) являются по сути своей описанием греческой грамматики, то есть перенесением в область метафизики лингвистической конвенции древнегреческого языка. Во-вторых, по мысли самого Аристотеля, его аналитика не входит в какую-либо содержательную часть знания, но является орудием (органоном) — средством получения истинных суждений, то есть онтологическим инструментом. Иными словами, Аристотель учил тому, как надобно думать, чтобы получать достоверные знания, не прибегая к опыту, поскольку лишь логико-дедуктивные заключения неопровержимы. И такой взгляд на проблему господствовал в европейской мысли очень долго. Формальная логика — система правил для преобразования высказываний безотносительно содержания, но исходящая лишь из их формы — считалась лучшим инструментом получения новых истин.

Обычный читатель, не имеющий специального образования, чаще всего недостаточно тонко понимает, почему формальная логика называется «формальной». Большинство встречающихся примеров вполне понятны в бытовом смысле, либо же наоборот — сугубо абстрактны и не вызывают дополнительных вопросов. Поэтому чаще всего не удается прочувствовать тот факт, что для формальной логики важно лишь то, как именно мы рассуждаем, но совсем неважно — о чем. Приведенный ниже пример должен, как представляется, все-таки внести ясность:

Известно: только красные шарики могут летать.

Вопрос: могут ли синие шарики летать?

На первый взгляд ответ кажется очевидным — нет, не могут. Однако с точки зрения формальной логики отвечать на поставленный вопрос нужно так: «Синие шарики могут летать, если они красные». В самом деле, в приведенном тексте нигде не говорится о том, что «быть красным» и «быть синим» — это взаимоисключающие свойства. Конечно, все мы знаем, что в реальном мире красный шарик не может быть одновременно еще и синим (будем считать, что варианты «в полоску» или «в крапинку» являются отдельным видом расцветки), однако эта информация является дополнительной к указанным условиям. С точки зрения формы высказывания совсем неважно, о каком свойстве предмета идет речь — о цвете, о размере, о гладкости поверхности и т. п. Если что-то не было указано явно, то этим нельзя оперировать, иначе можно допустить ошибку.

Пожалуй, ни у кого не возникнет возражений в правильности чуть измененного умозаключения:

Известно: только красные шарики могут летать.

Вопрос: могут ли большие шарики летать?

Ответ: большие шарики могут летать, если они красные.

Разумеется, в более сложных рассуждениях придерживаться такой строгости очень трудно, и это постоянно порождает ошибки и заблуждения.

<p>Силлогизмы</p>

В так называемый «Органон» Аристотеля входят его работы «Категории», «Об истолковании», «Первая аналитика», «Вторая аналитика», «Топика» и «Софистические опровержения», которые были написаны отдельно и объединены воедино спустя несколько веков после создания.

Важнейшее место во всех этих работах занимает «Первая аналитика», где изложено учение о силлогизме — доказательстве из трех частей: двух посылок и одного заключения. Существует несколько модусов (форм), самым известным из которых является следующий:

Все люди смертны (первая посылка).

Сократ — человек (вторая посылка).

Следовательно: Сократ смертен (заключение).

Конечно, смертность Сократа представляется достаточно очевидной, однако не всегда всё оказывается так просто. Для примера рассмотрим следующие две посылки, предложенные Льюисом Кэрроллом:

Перейти на страницу:

Похожие книги