И снова г-н Ньювентейт выдвигает это в качестве самоочевидной аксиомы, т. е. что между двумя равными количествами не может быть вообще никакого различия, или, что то же самое, их различие равно нулю. Эту истину, какой бы очевидной она ни была, г-н Лейбниц старается подкрепить, утверждая, что равны не только те количества, между которыми нет никакого различия, но также и те, различие между которыми бесконечно (incomparably) мало. Quemadmodum, говорит он, si Iineae punctum alterius Iineae addas quantitatem non auges [11]. Но если отрезки делимы до бесконечности, то мне интересно знать, как вообще может существовать такая вещь, как точка? Или, если допустить, что существуют точки, то как можно считать за одно и то же прибавление к чему-либо неделимой точки или приращение (differentia), например, ординаты у параболы, которое далеко от того, чтобы быть точкой, так как само делимо на бесконечное число реальных количеств, из которых каждое в свою очередь может быть разделено in infinitum и т. д., согласно г-ну Лейбницу. Все это те трудности, в которых запутались знаменитые люди, применяя идею бесконечности к чрезвычайно малым, но реальным и способным к делению частям протяжения.

Подробнее об этом можно узнать в «Acta Eruditorum» за июль 1695 г., где, если верить французскому автору «Analyse des infiniment petits», г-н Лейбниц достаточно обосновал и доказал свои взгляды. Хотя и ясно, что он старается не для того, чтобы поставить их под сомнение, и, кажется, боится, что nimia scrupulositate arti inveniendi obex ponatur [12], как будто человек способен быть слишком точным в математике или будто бы принципы геометрии не должны быть столь же бесспорными, как те выводы, которые из них вытекают.

359

У д-ра Шайена в главе 4 его «Философских принципов естественной религии» [13] есть один аргумент, который касается бесконечно малых количеств. Вот его слова:

«Вся абстрактная геометрия зависит от возможности существования бесконечно больших и бесконечно малых количеств, и истины, которые открываются с помощью методов, зависящих от этих предпосылок, подтверждаются другими методами, которые имеют иные основания».

На это я отвечу, что допущение бесконечно малых количеств отнюдь не необходимо для развития современного анализа. Ибо г-н Лейбниц признает, что его Calculus differentialis [14] может быть доказан reductione ad absurdum [15] в духе древних; да и сэр Исаак Ньютон в своем последнем трактате сообщает нам, что его метод флюксий может быть выведен a priori без допущения бесконечно малых количеств.

Я не могу обойти вниманием одно место в трактате г-на Рэфсона «De Spatio Reali seu Ente Infinito» [16] (гл. З, с. 50), где он бесконечно малую частицу называет quasi extensa ". Но что г-н Рэфсон подразумевает под pars continui quasi extensa [18], я не могу понять. Я также прошу разрешения отложить рассмотрение того, что некоторые современные знаменитые авторы без всяких оговорок утверждают о сфере с бесконечным радиусом, о равностороннем треугольнике с бесконечной стороной, т. е. о таких понятиях, которые, если их тщательно исследовать, будут найдены не совсем свободными от непоследовательностей.

Мое мнение таково, что все споры о бесконечных [величинах] прекратятся и исследование бесконечно малых количеств больше не будет приводить математиков в тупик только в том случае, если они к своей математике присоединят метафизику и снизойдут до того, чтобы узнать от г-на Локка о том различии, которое существует между бесконечностью и бесконечным.

АНАЛИТИК, ИЛИ РАССУЖДЕНИЕ, АДРЕСОВАННОЕ НЕВЕРУЮЩЕМУ МАТЕМАТИКУ, ГДЕ ИССЛЕДУЕТСЯ, ЯВЛЯЮТСЯ ЛИ ПРЕДМЕТ, ПРИНЦИПЫ и ЗАКЛЮЧЕНИЯ СОВРЕМЕННОГО АНАЛИЗА БОЛЕЕ ОТЧЕТЛИВО ПОЗНАВАЕМЫМИ и С ОЧЕВИДНОСТЬЮ ВЫВОДИМЫМИ, ЧЕМ РЕЛИГИОЗНЫЕ ТАИНСТВА и ПОЛОЖЕНИЯ ВЕРЫ

Перейти на страницу:

Похожие книги