20. У меня нет разногласий с вами относительно ваших выводов, они у меня есть только относительно вашей логики и метода. Как вы проводите доказательство? С какими предметами вы хорошо знакомы и ясно ли вы их себе представляете? На основе каких принципов вы действуете, насколько они правильны, и как вы их применяете? Необходимо помнить, что меня интересует не истинность ваших теорем, а только способ их доказательства, законный он или незаконный, ясный или туманный, теоретический (scientific) или экспериментальный. Чтобы избежать всякой возможности вашего неправильного суждения обо мне, я прошу разрешения повторить и я вновь настаиваю, что я рассматриваю геометра-аналитика как логика, т. е. то, каким образом он рассуждает и доказывает, а его математические выводы рассматриваю не сами по себе, а в их посылках, не в отношении того, являются ли они истинными или ложными, полезными или не имеющими значения, а лишь каким образом они выводятся из таких принципов и при помощи таких приемов выведения. А поскольку может показаться необъяснимым парадоксом, что математики выводят правильные положения, исходя из ложных принципов, могут прийти к правильному выводу и тем не менее ошибаться в посылках, я попытаюсь конкретно объяснить, почему это может произойти, и покажу, как ошибка может породить истину, хотя не может породить науку.
377
21. Следовательно, для того чтобы выяснить это положение, предположим, например, что надо провести касательную к параболе, и рассмотрим решение этой задачи при наличии бесконечно малых дифференциалов. Пусть АВ — кривая, абсцисса АР=х, ордината РВ=у, приращение абсциссы PM=dx, приращение ординаты RN=dy. Теперь допустим, что кривая представляет собой многоугольник и, следовательно, BN, приращение, то есть разность кривой, является отрезком прямой, совпадающим с касательной, а дифференциальный треугольник BRN подобен треугольнику ТРВ, тогда подкасательная РТ будет четвертым членом пропорции RN: RB = РВ..., т.е. dy : dx = y... Отсюда подкасательная будет равна y dx/dy.
Но здесь и содержится ошибка, возникшая в результате вышеупомянутого допущения, не соответствующего действительности, вследствие чего величина РТ получается больше, чем она есть на самом деле: ибо в действительности не треугольник RNB подобен РВТ, а треугольник RLB, и поэтому первым членом пропорции должен быть не RN, a RL, т. е. RN+NL, т. е. dy+z; отсюда истинным выражением для подкасательной должно было бы быть y dx/dy+z. Следовательно, когда dy было сделано делителем, была допущена ошибка, так как была взята меньшая, чем на самом деле, величина, и эта ошибка равнялась z, т. е. NL, отрезку, заключенному между кривой и касательной. Далее, в соответствии с характеристикой кривой, уу=рх, где р — параметр, отсюда в соответствии с правилом дифференцирования 2y dy=p dx и dy= p dx/2y. Но если умножить (y+dy) само на себя и сохранить все произведение, не отбрасывая площадь дифференциала, тогда, если подставить возросшие величины в уравнение кривой, окажется,
378
что действительно . Следовательно, была допущена ошибка, когда сочли, что , приведшая к увеличению истинного значения и вытекающая из ошибочного правила дифференцирования. и величина этой второй ошибки Следовательно, обе ошибки равны друг другу и взаимно уничтожаются; первая ошибка, приведшая к уменьшению истинного значения выражения, исправлена второй ошибкой, увеличивающей его значение.
22. Если допустить только одну ошибку, не найдешь правильного решения задачи. Но благодаря двойной ошибке доходишь до истины, хотя и не до науки. Ибо нельзя назвать наукой тот путь, при котором двигаешься вслепую и добираешься до истины, не зная как и при помощи каких средств. Для доказательства равенства обозначим BR или dx как
что после сокращения дает что и требовалось доказать.
23. Теперь я прежде всего замечу, что итог получается правильным не потому, что отброшенная площадь
379
ственную ошибку в итоге. В силу этого ваши теоремы не могут быть непогрешимо правильными, а ваши задачи — точно решенными, так как сами посылки не точны; в логике является правилом: conclusio sequitur partem debiliorem [10]. Поэтому замечу, в-третьих: когда заключение очевидно, а посылки неясны или когда заключение точно, а посылки неточны, мы можем совершенно свободно заявить, что такое заключение очевидно или точно не в силу