Исходя из вышеизложенного, мы должны в этом отношении припомнить, что различаемые степенные определения с аналитической стороны проявляются прежде всего, как формальные и совершенно однородные, что они означают числовые величины, не имеющие, как таковые, качественного различия одна от другой. Но в приложении к пространственным предметам аналитическое отношение обнаруживается вполне в своей качественной определенности, как переход от линейных к плоскостным {207}определениям, от прямолинейных к криволинейным и т. д. Далее это приложение приводит к тому, что пространственные предметы, данные по их природе в форме непрерывных величин, понимаются дискретно, — плоскость, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самых точек, на которые разлагается линия, линий, на которые разлагается плоскость и т. д., дабы от такого определения подвигаться далее аналитически, т. е. собственно арифметически; эти исходные пункты суть элементы искомых определений величины, из которых (элементов) должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в коих по преимуществу обнаруживается интерес к употреблению этого приема, требуется в качестве исходного элемента нечто определенное для себя самого в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то определенное для себя, которое служит ему целью. Результаты обоих методов совпадают, если только может быть найден закон дальнейшего процесса определения при отсутствии возможности достигнуть полного, т. е. т. наз. конечного определения. Кеплеру приписывается честь впервые придти к мысли такого обратного приема и принятие дискретного за исходный пункт. Объяснение того, как он понимает первое предложение архимедова измерения круга, выражает это очень просто. Первое предложение Архимеда состоит, как известно, в том, что круг равен прямоугольному треугольнику, один катет которого есть радиус, а другой равен длине окружности. Находя смысл этого предложения в том, что окружность круга содержит столько же частей, как точек, т. е. бесконечно много, из коих каждая может считаться основанием равнобедренного треугольника и т. д., Кеплер выражает тем самым разложение непрерывного в форму дискретного. Встречающееся здесь выражение бесконечное еще очень далеко от того определения, какое дается ему в дифференциальном исчислении. Если для таких дискретных частей найдена определенность, функция, то они должны быть далее соединены, служить элементами непрерывного. Но так как никакая сумма точек не образует линию, никакая сумма линий не образует плоскости, то точки уже изначала принимаются за линейные, а линии — за плоскостные. Умножение линий на линии представляется сначала чем-то бессмысленным, т. к. умножение вообще производится над числами, т. е. есть такое их изменение, при котором то, во что они переходят, совершенно однородно с произведением, есть изменение только величины. Напротив, то, что называется умножением линии, как таковой, на линию — т. е. ductus liniae in liniam или plani in planum, которое есть также ductus puncti in lineam — есть изменение не только величины, но последней, как качественного определения пространства, как измерения; переход линии в плоскость должен быть понимаем, как выход из себя, поскольку выход из себя точки есть линия, плоскости — полное пространство. То же самое получается, когда пред{208}ставляют себе, что движение точки образует линию и т. д.; но движение подразумевает определение времени и потому является в этом представлении лишь более случайным, внешним изменением состояния; между тем под выходом из себя должно понимать определенность понятия, качественное изменение — выражаясь арифметически, умножение — единицы (как точки и т. п.) в определенное число (линию и т. п.). При этом следует еще заметить, что при выходе из себя площади, который является как бы умножением площади на площадь, оказывается, по-видимому, различие между арифметическим и геометрическим произведением, так как выход из себя площади, как ductus plani in planum, арифметически дает умножение второго измерения на второе, т. е. произведение четырех измерений, геометрически понижаемое, однако, до трех. Насколько число с одной стороны, так как оно имеет своим принципом единицу, дает прочное определение внешнему количественному, настолько же произведение его формально; как числовое определение, 3*3, умноженное само на себя, есть 3*3*3*3; но та же величина, умноженная на себя, как определение площади, удерживается на 3*3*3, так как пространство, представляемое, как выход за себя точки, отвлеченного предела, имеет свой истинный предел, как конкретную определенность линии, в третьем измерении. Это различие могло бы оказаться действительным в свободном движении, в котором одна, пространственная сторона определяется геометрически, а другая, временная, арифметически (в кеплеровом законе s3:t2).