Приведенных соображений достаточно для того, чтобы выяснить то своеобразие в отношении величин, которое составляет предмет рассматриваемого ныне особого вида исчисления. Эти соображения можно было ограничить простыми задачами и способами их решения; и не соответствовало бы ни цели определения понятия, которое имелось здесь единственно в виду, ни силам автора обозреть весь объем т. наз. приложения дифференциального и интегрального исчисления и распространить индукцию, лежащую в основе указанного ею принципа, на все задачи и их решения. Но изложенное достаточно показало, что как каждому особому способу исчисления свойственна особая определенность или особое отношение величины к его предмету, и что как этот особый способ составляет сложение, умножение, возвышение в степень и извлечение корня, исчисление логарифмов и рядов и т. п., так то же справедливо о дифференциальном и интегральном исчислении; для того, что относится к этому исчислению, всего уместнее было бы название отношения степенной функции и функции ее развития или возвышения в степень, так как оно всего ближе к пониманию природы дела. Но как действие по другим отношениям величины, напр., сложение и т. п., также вообще употребляется при этом исчислении, так к нему применяются и логарифмы, отношения окружности и ряды в особенности для того, чтобы сделать удобнее выражение при потребных действиях вывода первоначальных из производных функций.

С формою ряда дифференциальное и интегральное исчисление вообще имеет ближайший общий интерес определения тех развиваемых функций, которые в рядах именуются коэффициентами членов; но между тем как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэффициенту ряда, ряд стремится найти сумму множества членов, расположенного по порядку степеней, с коим связаны эти коэффициенты. Бесконечное, присущее бесконечному ряду, неопределенное выражение отрицания определенного количества вообще, не имеет ничего общего с утвердительным определением, присущим бесконечному этого исчисления. Равным образом бесконечно малое, как приращение, посредством которого развитие принимает форму ряда, есть лишь внешнее средство этого развитие, и его так называемой бесконечности принадлежит лишь значение не иметь никакого значения, кроме значения такого средства; ряд, поскольку он в действительности не есть то, что от него требуется, приводит к некоторой прибавке, вновь отбросить которую есть излишний труд. Этим затруднением обременен и метод Лагранжа, который вновь прибег по преиму{206}ществу к форме ряда; хотя именно в этом методе чрез то, что наименовано приложением, проявляется истинное своеобразие, так как вместо того, чтобы втеснять формы dx, dy и т. д. в самые предметы, им указываются прямо те части, коим в них самих свойственна определенность производных функций (функций развития), и тем самым оказывается, что форма ряда не есть здесь то, о чем идет дело[28].

<p>Примечание 3-е</p><p>Еще другие формы, связанные с качественною определенностью величины</p>

Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле качественная определенность величины, о которой будет далее сказано, что она в этом исчислении рассматривается не только вообще, но на особенном отношении степенной функции к функции ее развития. Но эта качественная определенность является еще в дальнейшей, так сказ., слабейшей форме, и последняя, равно как связанное с нею употребление бесконечно малых и их смысл при таком употреблении, должны быть рассмотрены в настоящем примечании.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги