Приведенных соображений достаточно для того, чтобы выяснить то своеобразие в отношении величин, которое составляет предмет рассматриваемого ныне особого вида исчисления. Эти соображения можно было ограничить простыми задачами и способами их решения; и не соответствовало бы ни цели определения понятия, которое имелось здесь единственно в виду, ни силам автора обозреть весь объем т. наз. приложения дифференциального и интегрального исчисления и распространить индукцию, лежащую в основе указанного ею принципа, на все задачи и их решения. Но изложенное достаточно показало, что как каждому особому способу исчисления свойственна особая определенность или особое отношение величины к его предмету, и что как этот особый способ составляет сложение, умножение, возвышение в степень и извлечение корня, исчисление логарифмов и рядов и т. п., так то же справедливо о дифференциальном и интегральном исчислении; для того, что относится к этому исчислению, всего уместнее было бы название отношения степенной функции и функции ее развития или возвышения в степень, так как оно всего ближе к пониманию природы дела. Но как действие по другим отношениям величины, напр., сложение и т. п., также вообще употребляется при этом исчислении, так к нему применяются и логарифмы, отношения окружности и ряды в особенности для того, чтобы сделать удобнее выражение при потребных действиях вывода первоначальных из производных функций.
С формою ряда дифференциальное и интегральное исчисление вообще имеет ближайший общий интерес определения тех развиваемых функций, которые в рядах именуются коэффициентами членов; но между тем как интерес этого исчисления простирается лишь на отношение первоначальной функции к ближайшему коэффициенту ряда, ряд стремится найти
Примечание 3-е
Еще другие формы, связанные с качественною определенностью величины
Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле