Обычный метод, пользующийся представлением бесконечно малой разности, легко справляется с делом; для квадратуры кривой он принимает бесконечно малый прямоугольник, произведение ординаты на элемент, т. е. на бесконечно малую часть абсциссы, за трапецию, имеющую одною своею стороной бесконечно малую дугу, противоположную сказанной бесконечно малой части абсциссы; это произведение и интегрируется в том смысле, чтобы интеграл суммы бесконечно многих трапеций дал искомую поверхность, т. е. конечную величину ее элемента. Точно также он образует из бесконечно малой дуги и соответствующих ей ординаты и абсциссы прямоугольный треугольник, в котором квадрат этой дуги считается равным сумме квадратов обоих других бесконечно малых, интегрирование которых и дает конечную дугу.

Этот прием опирается, как на свое предположение, на то общее открытие, которое лежит в основе этой отрасли анализа, имеющее здесь тот смысл, что квадратура кривой, выпрямленная дуга и т. д. находятся к известной данной в уравнении кривой функции в отношении так наз. первоначальной функции к производной. Задача состоит в том, чтобы узнать, если известная часть математического предмета (напр., кривой линии) принимается за производную функцию, какая другая его часть выражается соответствующею первоначальною функциею. Известно, что если данная в уравнении кривой функция ординаты принимается за производную функцию, то соответственная ей первоначальная функция есть выражение величины отрезанной этою ординатою и кривою плоскости, что если принимается за производную функцию известное определение касательной, то первоначальная функция выражает величину соответствующей этому определению дуги и т. д.; но что эти отношения — одно первоначальной функции к производной, и другое величин двух частей или атрибутов математического предмета — образуют пропорцию, узнать и доказать этого не считает нужным тот метод, который пользуется бесконечно малыми и механическими действиями над ними. Является уже своеобразною заслугою остроумия нахождение вне уже известных результатов того, что некоторые и именно такие-то стороны математического предмета находятся в отношении первоначальной и производной функции.

Из этих обеих функций производная или, как она была определена, функция возвышения в степень, есть в интегральном исчислении данная; а первоначальная должна быть выведена из нее путем интегрирования. Но {203}первая дана не непосредственно, равно как не дано для себя, какую часть математического предмета следует считать за производную функцию, дабы через приведение ее к первоначальной найти другую часть или определение требуемой задачею величины. Обычный — метод, который, как сказано, сейчас же представляет известные части предмета, как бесконечно малые, в форме производной функции, находимой через дифференцирование первоначально данного уравнения предмета (напр., при выпрямлении кривой бесконечно малые абсциссы и ординаты), но зато принимает такие части, которые можно привести в связь с предметом задачи (в примере дуги), представляемом так же, как бесконечно малый, установленную элементарною математикою, вследствие чего, если эти части известны, то определяется и та часть, величина которой есть искомое; так, для выпрямления кривой пользуются вышеуказанными тремя бесконечно малыми, соединяемыми в уравнение прямоугольного треугольника, для ее квадратуры — ординатою, соединяемою с бесконечно малыми абсциссою в произведение, причем поверхность совершенно арифметически считается произведением линий. Переход от таких так называемых элементов поверхности, дуги и т. п. к величине самих поверхностей, дуги и т. п., считается затем лишь восхождением от бесконечного выражения к конечному или суммою бесконечно многих элементов, из которых должна состоять искомая величина.

Можно поэтому сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема дифференциального исчисления; реальный же интерес интегрального исчисления направляется напротив исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги