Следующий шаг, предпринятый Гильбертом, был явно беспрецедентным, хотя и довольно очевидным. Используя методы аналитической геометрии, он показал, что любое противоречие в евклидовой геометрии должно повлечь противоречие в арифметике вещественных чисел. Тем самым вопрос о непротиворечивости евклидовой и неевклидовой геометрии был сведён к аналогичному вопросу об арифметике вещественных чисел, которая, по мнению всех математиков, считалась непротиворечивой.

Спустя несколько месяцев после выхода из печати небольшая книжка Гильберта об основаниях геометрии стала бестселлером в математической литературе. Были запланированы переводы её на французский и английский языки, позже она была переведена и на другие языки 10. Студенты Гильберта, только год назад слышавшие, что он говорил «только о полях алгебраических чисел», с изумлением наблюдали за успехом этой книги. Каким образом Гильберту снова удалось вторгнуться в новую область математики и создать в ней выдающееся зрелое произведение? Однако в тот момент, когда они задавали себе этот вопрос, Гильберт начал публиковать работы в ещё одной, совершенно новой области математики.

<p>IX ПРОБЛЕМЫ</p>

«Чистая математика развивается, когда к решению старых проблем привлекаются новые методы, — любил говорить своим ученикам Клейн. — Приобретаемое таким образом лучшее понимание старых вопросов приводит к возникновению новых проблем».

По-видимому, лучшей иллюстрацией к этому утверждению Клейна был проект, за который взялся Гильберт. Летом 1899 года, сразу же после издания Оснований геометрии, он обратился к одной старой знаменитой проблеме, известной как принцип Дирихле. С этой проблемой были связаны имена всех крупнейших представителей математической школы Гёттингена.

Суть этой проблемы составляла одна логическая трудность, на которую стали обращать внимание только со времен Вейерштрасса. Гаусс, Дирихле, Риман и другие предполагали, что всегда существует решение так называемой краевой задачи для уравнения Лапласа. Это предположение было основано на физической интуиции, позволяющей всегда считать, что в соответствующей реальной ситуации, описываемой этой математической задачей, должен был быть определённый физический результат, или решение. Кроме того, с чисто математической стороны Гаусс заметил, что краевая задача для этого же уравнения может быть сведена к задаче минимизации некоторого двойного интеграла от функций с непрерывными частными производными, имеющих заданные граничные значения. В силу положительности этого двойного интеграла, очевидно, должна была существовать наибольшая нижняя грань для его значений, из чего делался вывод, что для одной из рассматриваемых функций этот интеграл принимал значение этой грани.

Рассуждение такого рода стало известно под названием принципа Дирихле после того, как Бернгард Риман весьма свободно пользовался им в докторской диссертации 1851 года для обоснования своей геометрической теории функций и присвоил ему имя своего учителя Лежёна Дирихле. Последний затрагивал в своих лекциях частный случай этого принципа.

Сейчас, оглядываясь в прошлое, мы считаем диссертацию Римана одним из самых крупных событий в истории современной математики. В те же времена, однако, доверие к ней было подорвано, когда Вейерштрасс подверг критике принцип Дирихле. Как указывал Вейерштрасс, предположение о том, что среди допустимых функций должна существовать та, на которой интеграл принимает своё наименьшее значение, не является обоснованным с математической точки зрения.

Для нематематика может показаться бессмысленным выдвинутое Вейерштрассом требование математического обоснования принципа, безусловно применимого в физических ситуациях. Но в действительности это не так, что и признал сам Риман после критики Вейерштрасса. Только строгое математическое доказательство может установить окончательную истинность математического утверждения и гарантировать, что оно всегда дает адекватное математическое описание физического явления.

Сам Риман, однако, не был серьёзно обеспокоен критикой Вейерштрасса. Ему принадлежало не одно открытие в теории функций, основанное на аналогичных физических ситуациях, связанных, в частности, с распространением электричества в проводнике. Он верил, что задача, которая «разумна физически», будет «разумна математически». Риман был убеждён, что, если потребуется, можно будет получить и математическое доказательство существования искомого минимума. Однако он умер молодым, не дожив до сорока лет; спустя же несколько лет после его смерти Вейерштрасс смог с уверенностью показать, что принцип Дирихле не всегда выполняется. Для этого он построил пример, в котором нельзя было найти функции, минимизирующей интеграл при заданных граничных условиях.

Перейти на страницу:

Похожие книги