Минковский не был слишком счастлив в Швейцарии. «Откровенно говоря, принимай эту новость легче, я с радостью готов вернуться в Германию». Его образ мышления и манера чтения лекций не были популярны в Цюрихе, «где студенты, даже наиболее способные из них... привыкли получать всё в разжёванном виде». Однако он не решался сделать это признание достоянием гласности в Германии. «Я чувствую, что, даже если бы у меня и была какая-нибудь надежда на новое назначение, в глазах многих я бы выглядел смешным».
Гильберт пытался подбодрить Минковского, пригласив его на церемонию открытия памятника Гауссу и Веберу в Гёттингене. Дни, проведённые в Гёттингене, показались Минковскому «похожими на сон», когда в конце недели он должен был вернуться к «суровой действительности» Цюриха. «Однако существование этих дней так же верно, как твоя аксиома арифметики 18 = 17 + 1... Каждый, кто в последнее время побывал в Гёттингене, не может не поразиться тому стимулирующему влиянию, которое оказывает тамошнее общество».
Сразу же, как только лекции Гильберта вышли из печати под названием
Один рецензент из Германии нашёл книгу столь красивой и простой, что поспешил предсказать ей стать в ближайшем будущем учебником по элементарной математике.
По мнению Пуанкаре, эта работа была классической: «Современные геометры, считающие, что они достигли предела в признании неевклидовой геометрии, основанной на отрицании постулата о параллельных прямых, расстанутся с этой иллюзией после ознакомления с работой профессора Гильберта. В ней они найдут разрушенными всё те тесные рамки, в которые они нас хотели заключить».
По мнению Пуанкаре, в работе был один-единственный пробел. «По-видимому, профессора Гильберта интересует только логическая сторона дела, — замечает он. — Имея ряд предложений, он находит, что все они следуют из первого. Его не интересует происхождение этого первого предложения с психологической точки зрения... Аксиомы постулируются, мы не знаем их происхождения; при таком подходе столь же легко постулировать
Американский рецензент пророчески писал: «Широкое распространение принципов этой работы принесёт много пользы для логического метода в любой науке и для ясного мышления и выражения мысли вообще».
По мнению Макса Дена, бывшего в то время слушателем его лекций, решающим фактором, определившим влияние работы Гильберта, был «характерный гильбертов дух... соединяющий в себе логическую мощь с крайним чувством реальности, презирающий условности и традиции, почти с кантианским удовольствием преобразующий любую существенную идею в свою противоположность, полностью использующий преимущества свободы математического мышления!».
В большой мере успех Гильберта, как и самого Евклида, обязан стилю и логическому совершенству изложения работы, а не её оригинальности. Однако, кроме привлекательного и легко воспринимаемого изложения современной точки зрения, он сделал ещё кое-что, оказавшееся чрезвычайно важным. Установив образец современного строгого мышления в виде традиционной лестницы — первичные понятия, аксиомы, теоремы, — он пошёл значительно дальше. Став в последующие годы общепринятым, его подход получил название «метаматематика» — буквально: «за пределами математики». В отличие от Евклида Гильберт требовал, чтобы его система аксиом удовлетворяла некоторым логическим требованиям:
Она должна быть
Она должна быть
Она должна быть
Наиболее значительной стороной этой части работы Гильберта была предпринятая им попытка доказать последнее требование — что аксиомы непротиворечивы. Это эквивалентно доказательству того, что обращение с ними никогда не приведёт к противоречию; короче, что, исходя из данных аксиом, невозможно получить как саму теорему, так и её отрицание. При новом понимании математической теории как системы теорем, выводимых дедуктивным путём из множества произвольно выбранных аксиом, понятие непротиворечивости теории было единственной заменой интуитивной истины.
Как мы видели, один метод доказательства непротиворечивости уже был. Этим методом было доказано, что любое противоречие в неевклидовой геометрии влечёт некоторое противоречие в евклидовой геометрии. Таким образом, было показано, что неевклидова геометрия столь же непротиворечива, как и евклидова геометрия.