В 1830 году два самобытных математика почти одновременно и независимо друг от друга вывели всевозможные следствия из евклидовых аксиом с измененной аксиомой о параллельных прямых. Их новая аксиома утверждала, по существу, что через данную точку вне данной прямой можно провести бесконечное число прямых, не пересекающих данную прямую. Так как полученные утверждения противоречили обычным представлениям, оба они — русский Лобачевский и венгр Я. Бояи — надеялись, что применение аксиоматического метода приведёт в конце концов к противоречивым теоремам. Однако ни одного противоречия в новой геометрии не было найдено, хотя теоремы, полученные из новой системы аксиом, и находились в резком противоречии с повседневной практикой (например, сумма углов треугольника была, в отличие от евклидовой геометрии, меньше двух прямых углов). Тем самым они обнаружили, что можно построить непротиворечивую геометрию, исходя из аксиом, не кажущихся очевидными (в отличие от евклидовых) и даже производящих впечатление неверных.
Однако удивительно, что открытие неевклидовых геометрий не вызвало «крика беотийцев», опасаясь которых, Гаусс (из письма к Бесселю от 27 января 1829 года) отказался от публикации своих исследований на эту тему. Больше того, это открытие даже не очень заинтересовало математиков. Для большинства из них оно было уж
Только в 1870 году идея неевклидовых геометрий получила общее признание. Это произошло после того, как 21-летний Феликс Клейн обнаружил в одной работе Кэли «модель», позволяющую отождествить исходные объекты и соотношения неевклидовой геометрии с некоторыми объектами и соотношениями евклидовой геометрии. Этим он доказал, что неевклидова геометрия непротиворечива в той же мере, что и евклидова, — противоречие в одной из них необходимо влечёт противоречие в другой.
Невозможность доказательства постулата о параллельных прямых стала, наконец, «столь же истинной, как и любой другой математический факт». Однако опять всё значение этого открытия было оценено не сразу и не всеми. Хотя большинство математиков и признали, что можно строить различные неевклидовы геометрии путём изменения постулата о параллельных прямых, они так и не могли понять того очевидного факта, что другие аксиомы Евклида также являются произвольными предположениями и, заменяя их другими, можно строить новые неевклидовы геометрии.
Только несколько математиков пытались всё же найти подход к геометрии, учитывающий всё значение открытия неевклидовых геометрий, и в то же время исключить все скрытые предположения, нарушающие логическую красоту труда Евклида. Первым такой подход предпринял Морис Паш, которому удалось полностью исключить все оплошности, основанные на наглядности, и свести геометрию к сплошному упражнению в логическом синтаксисе. Джузеппе Пеано пошёл ещё дальше. По существу, он перевёл работу Паша на изобретённый им язык символической логики. Подход Пеано к геометрии был абсолютно абстрактным — исчисление соотношений между логическими переменными.
Трудно было понять, каким образом Гильберт надеялся продвинуться в этой области математической мысли. В своих лекциях он стремился сократить расстояние между абсолютно абстрактной символизацией геометрии и её естественной геометрической наглядностью. Он снова обратился к евклидовым точкам, прямым линиям, плоскостям и старым отношениям инцидентности, порядка и конгруэнтности знакомых фигур — сегментов и углов. Однако этот возврат к прошлому не означал возвращения к старому обману евклидовой геометрии, претендующей на описание фактов об окружающем нас мире. Вместо этого он пытался представить в классических рамках современную точку зрения с ещё большей ясностью, чем Паш или Пеано.
Кратчайшим путем прямой линии на плоскости он довёл до логического конца своё замечание, сделанное шесть лет назад на берлинском вокзале. Сначала он объяснил своей аудитории, что прямая, точка и плоскость, как их определял Евклид, не имеют математического смысла. Они появляются только в связи с теми аксиомами, которые для них выбираются. Другими словами, назвать ли их точками, прямыми, плоскостями или же столами, стульями, пивными кружками, это будут те объекты, для которых справедливы соотношения, выражаемые аксиомами. В некотором смысле это похоже на то, как значение неизвестного слова проясняется по мере использования его в различных контекстах. Каждое дополнительное предложение, в котором оно участвует, исключает некоторые значения, которые могли бы иметь смысл в предыдущих предложениях.
В своих лекциях Гильберт предпочитал использовать традиционный язык Евклида: