Именно Цермело незадолго до этого указал Гильберту на досадный парадокс в теории множеств, на него же указал Готлобу Фреге молодой английский логик Бертран Рассел, причём как раз тогда, когда Фреге собрался послать в печать свой окончательный труд по основаниям арифметики. Этот парадокс — противоречие, полученное в результате рассуждений, основанных на правилах логики, принятых математиками и всеми людьми с времен Аристотеля, — имел дело с признаваемым всеми фактом, что некоторые множества, в отличие от других, являются элементами самих себя. Например, множество всех множеств, состоящих из более чем трёх элементов, принадлежит самому себе, так как оно содержит больше трёх элементов. С другой стороны, множество всех чисел не является элементом самого себя, так как оно не есть число. Теперь же Цермело и Рассел, независимо друг от друга, подняли вопрос о множестве всех множеств, не являющихся элементами самих себя. Так как элементами этого множества служат множества, которые не содержат себя в качестве своих элементов, то оно является элементом самого себя тогда и только тогда, когда оно не является элементом самого себя.

К 1904 году этот парадокс после его опубликования Расселом произвёл в математике, по мнению Гильберта, «эффект полной катастрофы». Один за другим выдающиеся специалисты в теории множеств — сам Фреге, а также Дедекинд, — признав поражение, бросили свои исследования в этой области. Нависла угроза над самыми простыми и важными дедуктивными методами, самыми обыкновенными и полезными понятиями; всему виною было то, что этот и другие подобные парадоксы возникли исключительно как следствие постоянно используемых в математике самых обычных дедуктивных методов. Даже Гильберту пришлось теперь признать, что, возможно, был прав Кронекер: идеи и методы классической логики на самом деле не соответствовали строгим требованиям теории множеств.

Раньше Гильберт верил, что сомнения Кронекера в законности теории множеств и некоторых частей анализа можно было устранить введением понятия совместности, или непротиворечивости. Это понятие должно было заменить критерий математической истины, основанный на явной конструкции исходя из множества целых чисел. Для этого потребовалось бы получить полное доказательство непротиворечивости арифметики вещественных чисел. До открытия парадоксов он полагал, что требуемое доказательство непротиворечивости можно было довольно просто получить подходящей модификацией известных методов рассуждений в теории иррациональных чисел. Однако после того, как в теории множеств были обнаружены парадоксы, с которыми была связана бoльшая часть его рассуждений, он понял, что ему придётся переменить свою точку зрения. В конце лета 1904 года, когда в Гейдельберге открылся третий международный конгресс математиков, Гильберт бросил на время интегральные уравнения с тем, чтобы поднять вопрос об основаниях математики.

По убеждению Кронекера, целое число лежит в основе арифметики и единственным критерием существования в математике должна служить конструкция, использующая конечное множество таких чисел. Гильберт и теперь, как прежде, резко противился такому ограничению математики и её методов. Как и Кантор, он твёрдо верил, что суть математики в её свободе, и видел в любом ограничении настоящую угрозу науке. Он был убеждён, что существует способ избавиться от парадоксов, не принося тех жертв, которые требовала точка зрения Кронекера. Однако предлагаемое им решение заставляло пойти ещё дальше, чем шёл Кронекер.

Гильберт настаивал теперь на том, что само понятие целого числа «может и должно» иметь обоснование.

«Арифметика часто рассматривается как часть логики, а традиционные фундаментальные логические понятия считаются, как правило, известными, если дело касается обоснования арифметики, — говорил он математикам, собравшимся в Гейдельберге. — Однако если внимательно посмотреть, то мы обнаружим, что в традиционных изложениях законов логики уже используются некоторые фундаментальные арифметические понятия, например понятие множества и даже, в некотором смысле, понятие самого числа. Тем самым мы оказываемся в порочном кругу, и именно поэтому, чтобы избавиться от парадоксов, нужно до некоторой степени одновременно развивать законы логики и арифметики».

Я убеждён, говорил им Гильберт, что на этом пути может быть найдено «строгое и вполне удовлетворительное обоснование» понятия числа — того «числа», частным случаем которого будут не только натуральные числа Кронекера и их отношения (рациональные дроби), но также иррациональные числа, против которых столь резко протестовал Кронекер, но без которых, по мнению Гильберта, «весь анализ был бы осуждён на бесплодие».

Именно в Гейдельберге Гильберт предложил, чтобы впервые в истории математики само доказательство стало объектом математического исследования.

Перейти на страницу:

Похожие книги