Взрываем плутоний и… получаем тот же плутоний в еще больших количествах!

Кстати, сразу же после нашего первого испытания бомбы в августе 1949 года два наших великих физика Г. Флёров и Д. Франк-Каменецкий предложили взрывать атомные заряды глубоко под землей. Предполагалось, что породы расплавятся, и довольно долгое время там будет температура порядка трех тысяч градусов. Если пробурить скважины и прокачивать через эту «атомную печку» воду, то можно будет энергию выводить на поверхность. А когда порода полностью остынет, то под землей образуется новое месторождение искусственных элементов – плутония и урана-233.

Но авторы нового проекта не согласились со своими предшественниками и учителями:

«По нашему мнению, проведение взрывов в стационарной установке (камере) является более реальным путем использования ядерных и термоядерных зарядов в целях получения электроэнергии и активных веществ…

Особенно интересным является использование термоядерных зарядов. В них в качестве „горючего“ материала используется дешевый дейтерий. Делящиеся вещества употребляются только в качестве запала для термоядерных реакций…

Использование термоядерных взрывов, по-видимому, является наиболее реальным путем в проблеме овладения термоядерными реакциями, так как в зарядах уже решена задача высвобождения термоядерной энергии и нейтронов. Задача же локализации взрывов хотя и является трудной, но эти трудности не носят принципиального характера».

Что же представляет установка для производства делящихся веществ и электроэнергии?

Прежде всего, это специальная камера, заполненная газом-теплоносителем. В центре ее взрывается заряд. Температура газа повышается почти до полутора тысяч градусов, а давление до 300 атмосфер. В теплообменнике газ отдает энергию – уже через час температура падает в три раза, резко уменьшается и давление. Можно производить следующий взрыв…

По замыслу авторов проекта, ядерные заряды подрываются каждый час.

Стены камеры выполнены из очень прочного материала. Лучше всего для этого подходит сталь. Толщина стенки – около пяти метров. Диаметр камеры – около 120 метров. Общая масса стенок – около трех миллионов тонн. В такой камере можно взрывать заряд приблизительно такой же мощности, что был сброшен на Хиросиму.

Понятно, что на планете подобной конструкции не существует. Камера для ядерных взрывов превосходит даже пирамиды Египта (прошу учитывать, что они сделаны из камня, а не металла!).

В проекте предлагается:

«Наиболее выгодно, по-видимому, собирать стенки камеры из стали 18 ХГТ… Эта сталь хорошо сваривается и имеет достаточно высокую ударную вязкость. Если камера выполнена из стали этой марки, в качестве теплоносителя применен водород и камера окружена железной рудой, то для удержания взрыва мощностью 17 кт ТЭ необходимо 0,6 млн тонн стали…

Камеру следует собирать из отдельных листов стали, таких, чтобы соединение их можно было производить сваркой. В целом камера будет состоять из ряда слоев. Целесообразно слой стали, находящийся в контакте с газом-теплоносителем, выполнить из специальной жаропрочной, устойчивой к коррозии стали».

Авторы проекта изучили разные варианты теплоносителя, который можно использовать в такой суперкамере. Исследовалась даже распыленная на мелкие частички вода, заполняющая весь объем. Однако от нее пришлось отказаться: создание таких крошечных капель трудно осуществить технически. Все-таки первенство остается за водородом.

Довольно сложно вводить в камеру новые ядерные заряды. Ведь нельзя нарушать ее герметичность. А потому авторы разработали специальное шлюзовое устройство, позволяющее опускать заряд на тросе в самый центр взрывной камеры. Причем делается это каждый час, но тем не менее герметичность конструкции не нарушается. Создание такого устройства уже само по себе уникально.

Немало изобретательности потребовалось от ученых и при разработке теплообменника, фильтрующего устройства, компрессоров, систем трубопроводов и даже электростанции. По расчетам получалось, что мощность электростанции составит около четырех миллионов киловатт.

Авторы проработали и другой вариант. В этом случае мощность электростанции поднималось до 15 миллионов киловатт. То есть две таких установки замещают всю атомную энергетику, созданную в СССР.

В заключение авторы проекта пишут:

«Для обеспечения непрерывной работы установки необходим завод, производящий специальные заряды. Производительность завода по схеме 1 – один заряд в час. В схеме 2, а также в случае, когда теплоносителем является вода, взрывы можно производить чаще, чем раз в час. Необходимая производительность завода соответственно возрастет до двух и более зарядов в час…

Оценки показывают, что при взрыве термоядерного заряда мощностью 17 кт ТЭ можно получить 4 кг плутония-239 или урана-233. Следовательно, если такие взрывы производятся один раз в час, то годовое производство делящихся материалов составляет 35 тонн…»

Перейти на страницу:

Поиск

Похожие книги