Учитывая всё сказанное, уровень математических познаний древности поражает. Египтяне и вавилоняне умели решать квадратные уравнения, знали арифметическую и геометрическую прогрессии, могли вычислить сумму квадратов последовательных чисел, разбирались в подобии и пропорциях, причем имелся даже специальный термин для тангенса (отношения катетов прямоугольного треугольника). При этом имеются определенные сомнения касательно того, что в реальной практике действительно встречались ситуации, требующие всех перечисленных сложных математических выкладок. Вероятно, некоторые «бытовые» задачи (например, как поделить пшеницу в соответствии с арифметической прогрессией) были помещены в учебные папирусы специально, дабы оправдать изложение дополнительного сложного материала.
Но особенно большие успехи были достигнуты в мастерстве определения площадей различных фигур. Использовались точные формулы для вычисления площадей треугольников, прямоугольников и трапеций, а также приближенные соотношения для площадей любых четырехугольников. Также было найдено достаточно точное выражение для определения площади круга.
В уже известном нам папирусе Ахмеса имеется задача №R52 следующего содержания:
…………..9…….9
✓……1/9…….1
…………………..1
…………..1…….8
…………..2…….16
…………..4…….32
✓………..8…….64
……………………64
Текст задачи написан не совсем ясно, поэтому поясним его. Речь идет об окружности с диаметром равным 9 хетам. Поскольку нам уже известно, как считали древние египтяне, то из вспомогательных арифметических выкладок мы можем заключить, что на самом деле из диаметра вычитали не единицу, а 1/9 диаметра. Теперь можно записать следующую египетскую формулу для площади круга
Это выражение легко преобразовать следующим образом
Таким образом, можно заключить, что египтяне определили число π с очень высокой точностью, хотя у них не существовало конкретного понятия о такой константе.
Вопросы определения объемов также исследовались вавилонянами и египтянами с величайшей тщательностью. Они знали способы точно вычислять объемы куба, параллелепипеда, призмы (с трапецией в поперечном сечении), а также правильной усеченной четырехугольной пирамиды. Последнюю формулу едва ли можно вывести, не зная предварительно, что объем пирамиды равен трети от объема призмы с равновеликими основанием и высотой. Этот факт, в свою очередь, никак нельзя установить без использования хотя бы примитивных методов интегрирования, поэтому его строгое обоснование в Египте или Вавилоне представляется сомнительным. Надо полагать, что формула для объема пирамиды была получена эмпирическим путем (например, с помощью взвешивания), а уже затем с помощью математических преобразований удалось вывести выражение и для объема усеченной фигуры.
Усеченной призме посвящена задача № M14 Московского математического папируса, хранящегося в Музее изобразительных искусств имени А. С. Пушкина. Ее текст таков:
Текст задачи слегка запутан, но если обозначить высоту усеченной пирамиды за
Вавилоняне знали эту же формулу в ином виде, который позже переняли греки
Также для этой задачи вавилоняне могли использовать приближенную формулу
которая в нашем случае дает величину объема равную 60 кубических локтей, что несколько больше истинного значения.
Влияние восточной математики на греческую