Описанный геометрический метод представляет собой не что иное, как графическое представление последовательного приближения при разложении в ряд. Если числитель и знаменатель в выражении
Формулу Герона для корня из
В последнем виде это выражение было известно уже вавилонянам, причем они понимали, что ответ получается неточным. Нас, однако же, не должна вводить в заблуждение простота приведенных алгебраических преобразований, поскольку в те времена еще не существовало аналогичной символьной записи, а все операции над пропорциями осуществлялись графически либо устно. Скорее всего, вавилоняне получили свою формулу независимо с помощью каких-то элементарных геометрических выкладок.
В «Началах» Евклида, а также в комментарии Теона к «Альмагесту» мы находим простое объяснение для такого способа извлечения корня. Пусть необходимо найти сторону AB квадрата ABCD, если его площадь равна
Эта формула в точно таком же виде (естественно, описанная словами безо всякой символики) встречается у жившего в XIII–XIV веках византийского математика армянского происхождения Николая Артавазда Рабды. Проиллюстрировав процедуру извлечения корня числовым примером, Рабда заключает: «Вот изложение простейшего нахождения квадратного корня. Более же точный способ нелегок для понимания, даже под руководством учителя».
Очень часто в книгах по истории науки опускаются все излагаемые тут подробности о сути греческой геометрической математики. Из-за этого может возникнуть недопонимание: как получилось, что античные и средневековые математики не смогли открыть «элементарных» вещей и произвести «простейших» преобразований, понятных любому современному смышленому школьнику. Ответ, как теперь должно быть ясно, достаточно прост — в графическом виде такие преобразования являются чрезвычайно трудными или вовсе невозможными. Одновременно с этим становится еще более удивительным то, сколь многого удалось достичь греческим математикам, пользуясь столь неудобными средствами.
Добавим еще, что теперь уже должно стать понятно, почему ни Фалес, ни другие древнегреческие философы-материалисты не создали ничего похожего на современную физику. Даже если бы они захотели сравнивать результаты наблюдений с выводами из своих метафизических теорий, то эта задача оказалась бы им не по силам. Виной всему — ограниченность античной математики.
Разумеется, привычный для нас последовательный и строгий вид геометрия приняла далеко не сразу. Так, в V веке до нашей эры первые греческие математики творили в основном для близкого круга друзей или учеников, поэтому считалось вполне достаточным, чтобы читатели просто поняли общую суть рассуждения. Причем вместо готовых окончательных решений автор зачастую описывал весь путь своих поисков, делился ошибками и неудачными попытками. Позже, вместе с общим ростом культуры, математические тексты обрели свою классическую стройность.
На самом деле нам не так уж много известно непосредственно о геометрии эллинов V и IV веков до нашей эры. Хоть эти столетия и сохранили нам целый ряд литературных памятников, но все имеющиеся тексты практически не касаются математики: встречаются лишь редкие и разрозненные свидетельства. Самые древние труды по греческой геометрии, которыми мы располагаем, созданы после походов Александра Македонского и принадлежат Евклиду, Архимеду и Аполлонию (а также Автолику из Питаны, о котором мы поговорим в главах, посвященных астрономии). Все эти люди творили, опираясь на длительную и развитую математическую традицию, и мы сейчас попробуем дать ее краткий очерк, понимая, впрочем, что некоторые вопросы до сих пор остаются спорными.