Допустим, нам нужно разделить 35 на 6. Представим 35 в виде прямоугольника со сторонами 7 и 5 (длины тут не важны, поэтому такое представление всегда осуществимо, если одна из сторон равна 1). Если мы теперь построим рядом другой равновеликий исходному прямоугольник со стороной 6, то вторая сторона нового прямоугольника будет, разумеется, равна 35/6. Таким образом, мы получим отрезок, длина которого является результатом требуемого деления.
Выполнялось это следующим образом. К первому прямоугольнику ABDC прикладывался отрезок BE с длиной 6. Затем строилась точка F, лежащая на пересечении продолжений прямых ED и АС. Чертеж дополнялся параллельными линиями, чтобы получился прямоугольник DHGJ, который оказывается равновеликим исходному прямоугольнику ABDC. В последнем утверждении легко убедиться, если заметить, что диагональ EF делит большой прямоугольник AFGE на равные части, причем полученные малые треугольники также попарно равны. Таким образом, площадь DHGJ равна 35, сторона DJ = 6, а, следовательно, сторона DH равна 35/6, что и требовалось получить. Данный способ деления приводит, например, Евклид в своих знаменитых «Началах».
Еще более поучительным является античный метод приближенного извлечения квадратного корня. В «Метрике» Герона Александрийского (жившего, как предполагают, в самом начале нашей эры) приводится следующее правило:
В оригинальном тексте, разумеется, используется греческая математическая символика и числовая запись, а сама задача формулируется, как необходимость найти сторону квадрата по заданной площади. Никаких пояснений к столь нетривиальной формуле Герон не приводит, хотя почти все теоремы «Метрики» сопровождаются доказательствами. Видимо, данное правило являлось общеизвестным и не требовало особых комментариев, а в книге оно появилось лишь для того, чтобы напомнить читателю порядок вычислений. Заметим, что уже в работах Архимеда (жившего на несколько веков раньше) извлечение корня всегда осуществлялось без всяких пояснений, так что, вероятно, эта процедура действительно была известна всем математикам. Разберемся в ней и мы.
Пусть необходимо извлечь квадрат из числа
Геометрически это можно проиллюстрировать следующим образом. Пусть ABDC есть исходный квадрат, имеющий заданную площадь
Если точность такого решения нас не устраивает, то мы повторим описанное построение еще раз (пунктирные линии на чертеже), но теперь уже вместо