Атомистический подход позволял легко доказать, что две любые пирамиды с равновеликими основаниями и одинаковыми высотами будут иметь равный объем. В самом деле, если нарезать пирамиду на тончайшие слои, то каждый из получившихся многоугольников одной пирамиды окажется равновеликим соответствующему многоугольнику другой. Получается, что суммы всех многоугольников, из которых состоят обе пирамиды, равны, а, следовательно — одинаковы и их объемы. Тут важно уточнить, что у сравниваемых пирамид основания могут иметь различающуюся форму, и важно лишь равенство их площадей. Аналогичные рассуждения можно привести и для призм с равновеликими основаниями и равными высотами. А поскольку, с точки зрения атомистов, круг являлся многоугольником с очень большим числом сторон, то все сказанное оказывалось справедливым также для конуса и цилиндра.
Поскольку треугольную призму легко разделить на три равновеликих пирамиды, тот объем каждой такой пирамиды равен трети объема этой призмы или же — в более общем виде — объем пирамиды и конуса равен трети произведения площади их основания на высоту. Хотя греки не вычисляли объемы по современным нам формулам, а говорили именно об отношении объемов одних тел к объемам других.
Если теперь разбить круг (бесконечноугольник) на множество чрезвычайно узких треугольников с вершиной в центре, то можно легко увидеть, что площадь круга равна половине произведения его периметра на радиус. Аналогично можно и шар (бесконечногранник) представить как совокупность тончайших пирамид с вершинами в центре, и тогда объем шара окажется равен трети произведения площади его поверхности на радиус. Вопрос о том, как определить периметр круга и площадь поверхности шара пока что оставался открытым.
Похожим образом атомисты подходили к вопросу о площади эллипса, который, вслед за древними египтянами, понимался просто как сплющенный круг, все ординаты которого относятся к абсциссам как
Кроме сказанного, можно косвенно предположить, что знаменитый парадокс Зенона об Ахиллесе и черепахе был направлен именно против атомистов, которые занимались суммой ряда 1/2+1/4+1/8+1/16+… и, похоже, пришли к выводу, что она равна единице.
Первые «Начала». Квадратура круга
Уже в конце V века до нашей эры Гиппократ из Хиоса (неудачливый торговец, но талантливый математик, которого не следует путать его со знаменитым врачом), перебирается в Афины и составляет «Начала» — первый свод всех имеющихся геометрических знаний — который, к сожалению, дошел до нас лишь в нескольких отрывках. Из комментариев Симпликия (преподавал в Академии, когда император Юстиниан закрыл ее в 529 году) к Аристотелю мы знаем, что в центре интересов Гиппократа стояла проблема квадратуры круга. Этот ученый сумел доказать, что для некоторых серповидных фигур (луночек), ограниченных двумя круговыми дугами, можно с помощью циркуля и линейки построить равновеликие треугольники, а, значит, и квадраты.
На чертеже заштрихованы подобная луночка (возможны и другие варианты ее построения) и равновеликий ей треугольник. Докажем равенство их площадей. Из рисунка видно, что диаметр малой окружности и радиус большой связаны соотношением AB2 = 2·OB2. Тогда половина площади малой окружности будет равна π·AB2/8 = π·OB2/4, но площадь четверти большой окружности тоже равна π·OB2/4. Если исключить общую часть рассматриваемых площадей, то останутся именно заштрихованные области, чье равенство и требовалось доказать.
Предполагалось, что, следуя этим путем, будет возможно построить квадрат равновеликий всему кругу, но, разумеется, эту задачу Гиппократ решить не смог.
Текст Гиппократа по стилю уже напоминает Евклида: перед нами не философская беседа, а последовательное изложение со ссылками на чертеж и ранее доказанные положения. Из этих ссылок можно заключить, что в те времена уже было известно всё, что позже войдет в I и II книгу Евклида, а также частично в III, IV и VI книги, однако постулаты и аксиомы, от которых отталкивался Гиппократ, нам неизвестны. Тем не менее, он упоминает, что площади кругов относятся как квадраты диаметров, а этот факт тогда мог быть доказан лишь атомистическим способом.
Кроме того, Гиппократ занимался и проблемой удвоения куба, указав лишь, что она сводится к необходимости вставить между двумя отрезками, один из которых вдвое длиннее другого, еще двух таких отрезков, чтобы все они находились в непрерывной пропорции. В самом деле, если имеются два отрезка с длинами
то, следовательно, имеем
Разумеется, Гиппократ не смог получить точного ответа, однако сумел найти достаточно точное приближенное значение