Построив статику рычага по строгим лекалам эллинистической геометрии, Архимед занялся также и вопросами статики гидравлической. Эти исследования были не праздным или частным увлечением, но развитием работ многих его предшественников. Согласно некоторым источникам и Архит, и Стратон, и многие другие греческие мастера и ремесленники умели изготавливать игрушки и механизмы, приводящиеся в движение силой сжатой воды или воздуха. Очевидно, эллины очень рано поняли, что воздух упруг, а нагретая вода стремится расшириться, но общепринятой теории, описывающей данные явления, не существовало. Наиболее разумными выглядели такие объяснения, которые так или иначе представляли всякую среду состоящей из частиц, между которыми могут существовать или хотя бы гипотетически образовываться промежутки. При нагревании в эти зазоры проникают элементы огня, увеличивая тем самым исходный объем вещества. При охлаждении, напротив, элементы огня покидают вещество, и его частицы сближаются либо из-за взаимного притяжения, либо потому, что природа не допускает пустоты. Далеко не все мыслители соглашались с такой физической трактовкой, но она в любом случае была чисто качественной, то есть философской, но не научной. Архимед решает изложить учение о механике жидкости в таком же виде, как это было сделано в отношении учения о равновесии, и блестяще решает данную задачу в своем знаменитом трактате «О плавающих телах».
Рассуждение начинается со следующих, сформулированных в виде допущений, постулатов:
1. Жидкость состоит из частиц.
2. Более сдавленные частицы жидкости выталкивают менее сдавленные частицы, расположенные с ними на одном уровне.
3. Каждая частица жидкости сдавливается всей расположенной вертикально над ней жидкостью, если только сама жидкость не находится в сосуде, либо не испытывает иное давление.
Заметим, что Архимед не утверждает, будто бы вода действительно состоит из частиц, но лишь предполагает это, а затем делает логические выводы из своих гипотез. Никаких сравнений теоретических результатов с экспериментом в сочинении не приводится, хотя из других источников мы точно знаем, что они неоднократно производились.
Первым же следствием из перечисленных аксиом является теорема о том, что всякая успокоившаяся жидкость будет иметь поверхность в форме шара, центр которого совпадает с центром Земли (тут необходимо заметить, что Архимед полагает шарообразность нашей планеты очевидной для читателей). В самом деле, пусть дуга AC соответствует поверхности Земли, дуга CD — сферической поверхности жидкости, а пунктирами обозначены направления к центру Земли. В таком случае все частицы жидкости, расположенные на одинаковом уровне, например в слое XY, испытывают одинаковое давление, ведь толщина расположенной выше жидкости везде одинакова. Никакая частица не будет вытесняться другими, и система останется в равновесии. Если же мы предположим, что поверхность воды имеет иную форму, например KLMNO, то под точками K, M и O давление будет больше, чем под точками L и N, следовательно, равновесие нарушится, и жидкость придет в движение, пока ее поверхность не примет сферическую форму.
Теперь уже легко понять, почему какое-либо тело, будучи опущенным в равнотяжелую с ним жидкость (понятия «удельный вес» и «плотность» Архимеду не знакомы) погрузится в нее так, что никакая его часть не станет выступать над поверхностью, после чего прекратит всякое движение. В самом деле, пусть O — центр земли, и поверхность жидкости имеет сферическую форму. Предположим, что мы погрузили тело KLNM в жидкость не полностью. Тогда часть PQNM создаст на нижний выделенный пунктиром столб частиц давление аналогичное вытесненному объему жидкости (ведь тело и жидкость по условию равнотяжелы), а вот часть KLQP создаст дополнительное давление, и, согласно, принятым постулатам система выйдет из равновесия и более сдавленные частицы начнут выдавливать менее сдавленные — тело станет опускаться вниз. Однако лишь только оно погрузится полностью и придет в состояние ABDC (поворот фигур на чертеже не несет физического смысла), то давление вещества под AB станет аналогично давлению в любом другом месте — наступит равновесие и движение прекратится. По непонятной причине Архимед не делает очевидного вывода еще и о том, что насильно погруженное до уровня WXZY равнотяжелое с жидкостью тело останется в таком положении сколь угодно долго.
Аналогичным образом доказывается, что тело более легкое, чем жидкость, не погрузится в нее целиком, но будет выступать над поверхностью воды, причем вес всего тела KLNM окажется равен весу вытесненной жидкости, то есть объему жидкости в PQNM. Лишь в таком случае давление на все частицы жидкости окажется одинаковым и наступит равновесие. Данные соображения очень подробно и обстоятельно обосновываются Архимедом в двух отдельных теоремах.