Как несложно понять, всё приведенное доказательство исходит из того, что груз обязательно является равномерным и гладким. В реальности же, поясняет Герон, у соприкасающихся тел всегда имеются шероховатости, которые зацепляются подобно зубчатым колесам, отчего и создается некоторое сопротивление движению. Влияние сил трения, однако же, никак не исследуется.

Далее идут некоторые рассуждения о том, почему тело вообще скатывается по наклонной поверхности. Дело в том, отвечает Герон, что если провести через точку касания вертикальную плоскость, то она поделит тело на две неравные части, причем большая из них (обозначена как B на нашем чертеже) будет находиться ниже меньшей (обозначена как A на нашем чертеже) и потянет все тело вниз. Чтобы остановить движение, необходимо, по мнению Герона, подвесить с противоположной стороны тяжесть, равную разностью между B и A. Данные соображения носят исключительно описательный характер, влияние угла наклона никак не исследуется, объекты сложной формы не рассматриваются, никаких математических законов равновесия на наклонной плоскости не выводится.

Отдельно разбираются понятия центра подвешивания и центра тяжести. О первом говорится, что это такая точка, подвешивание за которую оставляет систему в равновесии. При этом Герон, похоже, не понимает, что эта формулировка, по сути, и определяет цитр тяжести, который почему-то полагается чем-то иным, а именно — точкой пересечения вертикальных плоскостей, идущих от всевозможных мест подвешивания тела. Приводится даже сложное доказательство того, что в любом теле существует только один центр тяжести: тело много раз мысленно поворачивается и делится на равные части вертикальной плоскостью, после чего показывается, что предположение о пересечении данных плоскостей в различных точках приводит к абсурду. Суть доказательства вполне эллинистическая, но по форме оно дано не в виде последовательных аксиом и теорем, а в нечетком и сжатом изложении. Скорее всего, это место было переписано у Архимеда, которого Герон понял неудовлетворительно.

Закон рычага у Герона формулируется кратко, буквально одним предложением, зато дополнительно дается несколько интересных пояснений. В том числе отмечается, что реальный рычаг сам имеет некоторый вес, поэтому нельзя буквально понимать условие обратной пропорциональности между длиной плеч и весом грузов. В самом деле, предположим, что два различных груза уравновешены на физических весах, как это показано на чертеже. Если теперь отрезать те части весов, которые выступают за точки подвеса, то равновесие нарушится (действительно, от уравновешенной системы отсекли слева больше массы, чем справа), хотя расстояние между грузами и точкой опоры не изменилось. Это, чрезвычайно остроумное доказательство, к сожалению, никак не развивается — Герон даже не пытается сформулировать математические соотношения равновесия для физического рычага.

<p>Статика сооружений у Герона</p>

Наиболее же интересный раздел первой книги «Механики» посвящен статике сооружений и составлен со ссылкой на несохранившийся трактат Архимеда «Об опорах» (Герон прямо пишет, что из первоисточника взяты лишь вопросы, ксающиеся количественных измерений, поскольку именно это требуется учащимся по его трактату). Рассматривается проблема распределения веса горизонтальной балки на несколько подпирающих ее колонн. С самого начала безо всякого доказательства полагается очевидным, что равномерная балка, лежащая своими концами на двух колоннах, нагружает каждую из них половиной своей тяжести. В самом деле, если принять вес балки за P, то на точки A и B приходит одинаковая нагрузка, равная P/2.

Далее Герон усложняет задачу и рассуждает следующим образом. Если поместить между двумя колоннами третью, то для вычисления нагрузок необходимо мысленно разрезать балку над каждой точкой опоры. Поскольку в таком случае никаких дополнительных перемещений не произойдет, то и распределение тяжести останется прежним. Теперь задача сводится к предыдущему случаю: мы имеем балки AC и CB, каждая из которых опирается концами на две колонны. Поэтому, согласно Герону, левая колонна воспримет нагрузку PAC/2, центральная — нагрузку PAC/2+ PCB/2, а правая — нагрузку PCB/2. Иными словами, на центральную колонну, где бы она ни располагалась, придет половина от веса балки, а его вторая половина распределяется между крайними колоннами в соответствии с отношением длин CB/AC. Данное рассуждение затем распространяется Героном на любое число колонн.

Предложенное решение задачи с тремя колоннами абсолютно неверно, ведь после разрезания балки в ней полностью меняется распределение внутренних сил. В общем случае системы такого рода (если опор более двух) являются статически неопределимыми и не могут быть рассчитаны без учета деформирования элементов конструкции. Поскольку иных античных источников по данной теме не сохранилось, то нет никакого способа определить, кто именно — Архимед или Герон — допустил тут ошибку.

Перейти на страницу:

Похожие книги