9. Рассмотрев сам предмет, я далее приступаю к рассмотрению принципов этого нового анализа при помощи моментов, флюксий или бесконечно малых величин; если в результате окажется, что ваши главные положения, от которых, как полагается, зависит все остальное, содержат ошибки и ложные заключения, то отсюда будет следовать, что вы, не знающий, куда направить самого себя, не можете, хотя бы из чувства простой скромности, быть руководителем для других людей. Главное в методе флюксий заключается в том, чтобы получить флюксию, или скорость движения (momentum), для прямоугольника, т. е. произведение двух неопределенных величин. Ибо именно из этого выводятся правила получения флюксий всех других произведений и степеней, независимо от характера коэффициентов или индексов, будь они целыми числами или дробными, действительными или иррациональными. Можно было бы подумать, что это главное положение должно быть очень четко доказано, принимая во внимание, что на нем основано очень многое и что его влияние распространяется на весь анализ. Но пусть читатель судит сам. Покажем использование упомянутого принципа на примере *. Положим, что произведение, или прямоугольник АВ, увеличивается благодаря постоянному движению и что мгновенные приращения сторон А в В соответственно равны а и b. Когда стороны А и В были меньше, положим, на 7» их моментов, прямоугольник равнялся .
* «Naturalis Philosophiae principia mathematica», lib. 2, lem. 2 [5].
Но как только стороны А и В увеличились на оставшиеся две половины их моментов, прямоугольник становится равным
Вычтем из последнего прямоугольника предыдущий, и останется разность аВ + bА. Следовательно, приращение прямоугольника, образованного целыми приращениями а и b, есть аВ + bА, что и требовалось доказать. Однако очевидно, что для получения момента или приращения прямоугольника АВ прямым и истинным методом необходимо взять стороны такими, какими они получились в результате увеличения их на полные приращения, и затем перемножить их (А+а)х(В+b), а полученное произведение (AB+aB+bA-t-ab) и есть
369
увеличенный прямоугольник; отсюда, если мы вычтем АВ, остаток (аВ+bА+аb) и будет истинным приращением прямоугольника, превышающим тот, который был получен предыдущим незаконным и непрямым методом, на величину ab. и это справедливо в любом случае, какими бы ни были величины а и b, — большими или малыми, конечными или бесконечно малыми, приращениями, моментами или скоростями. Не поможет и утверждение о том, что ab — величина чрезвычайно малая, поскольку нам говорят, что in rebus mathematicis errores quam minimi non sunt contemnendi *.
* Introd, ad «Quadraturam Curvarum» [6].
10. Ничто, кроме неясности предмета, не могло бы побудить или заставить великого автора теории флюксий навязать своим последователям такой ход рассуждений, который только что был продемонстрирован нами на примере, и ничто, кроме молчаливого уважения к авторитету, не могло бы заставить их принять его. Вопрос действительно трудный. Ничего нельзя сделать до тех пор, пока не избавимся от величины ab. Чтобы добиться этого, понятие о флюксиях смещается; его освещают с разных сторон; положения, которые должны быть ясны как основополагающие принципы, затуманиваются, а термины, употребление которых должно быть неизменным (steadily), делаются двусмысленными. Но, несмотря на всю эту изощренность и искусство, задача избавления от величины ab не может быть решена при помощи законного логического хода рассуждения. Если кто-либо при помощи негеометрических или демонстративных методов убедит себя в полезности определенных правил, которые он впоследствии сообщит своим ученикам в качестве неоспоримых истин и докажет их весьма тонко, с помощью точных и сложных понятий, то нетрудно представить себе, что такие его ученики, чтобы не утруждать себя размышлениями, могут склониться к спутыванию полезности правила с определенностью истины и принять одно за другое, особенно если они привыкли скорее считать, чем думать, и стремятся идти быстрее вперед, а не заботятся о том, чтобы ступать осторожно и ясно видеть свой путь.
370