Общий математический подход Архимеда легко понять на примере решения задачи об определении площади параболы, которое было в свое время отправлено Досифею. После пожелания здоровья адресату и слов сожаления о кончине Конона следует краткое введение, где сообщается о том, что геометры прошлого (очевидно, имеются в виду атомисты и их последователи) часто пользовались вряд ли убедительными предпосылками, а потому большинство ученых не приняли предлагаемых этими геометрами решений для площадей различных фигур. Далее Архимед приводит другую посылку «
Вероятнее всего, первоначально Архимед использовал те самые «неубедительные» предпосылки атомистов, чтобы представить параболический сегмент и построенный на нем треугольник в виде множества плотно прилегающих друг к другу линий. Такой подход позволил ему получить искомое решение, но в отправленном Досифею доказательстве об этой части своей работы Архимед умалчивает.
Приведем сперва геометрический способ доказательства, как наиболее наглядный, хотя в самом тексте Архимеда этот вариант дается после механического. Пусть имеется парабола AOB и прямая AB, отделяет от нее сегмент. Ниже будет рассмотрен простейший вариант симметричного сегмента параболы, но в целом неважно, как именно проходит прямая AB, поскольку суть доказательства всегда останется одной и той же.
Для начала обратимся к левой части чертежа. Проведем через точки A и B касательные к параболе. Они пересекутся в точке Q. Нетрудно показать (и это было уже известно Архимеду), что если точки N и M являются серединами отрезков AQ и BQ, то NM касается параболы в точке O. Из условий подобия заключаем, что площадь треугольника NMQ (заштрихован крупными клеточками) равна SNMQ = 1/4·SAQB. Также заметим, что треугольники ANM и NMQ имеют равные площади, поскольку у них одно и то же основание NM и равные высоты (ведь N является серединой AQ). Теперь отметим точки K и L на серединах отрезков AN и NO. Аналогично предыдущему построению получим, что KL касается параболы в точке P, причем площадь треугольника KNL (заштрихован мелкими клеточками) равна SKNL = 1/8·SANM, поскольку его основание вчетверо меньше, а высота вдвое меньше, чем у треугольника ANM. Таким образом, площадь двух заштрихованных мелкими клеточками треугольников составит 1/16 от SAQB. Достроив по такому же принципу треугольники в оставшихся незаштрихованных четырех областях под параболой мы получим, что площадь новых треугольников составит 1/64 от SAQB. Далее дополнительные треугольники можно описывать вокруг параболы сколь угодно долго, получая на каждом этапе вчетверо меньшую площадь, чем до этого. Иными словами, чтобы понять, какую часть от треугольника AQB занимает площадь под параболой, нам нужно найти сумму следующего ряда
Из вспомогательного чертежа видно, что сумма этого ряда равна 1/3, поскольку каждый заштрихованный квадратик занимает треть от своего L-образного участка (площадь всего большого квадрата принимается за 1). Но если заштрихованная площадь равна трети от треугольника AQB, то незаштрихованная, соответственно — двум третям.
В результате мы получили, что площадь сегмента параболы равна 2/3 от SAQB, либо же 4/3 от SAOB, поскольку площадь треугольника AOB вдвое меньше площади треугольника AQB (у них одинаковое основание AB, но высоты относятся как 1 к 2). Поскольку Архимед не осуществлял предельного перехода, то на самом деле он лишь показывал, что, достраивая внешние треугольники много-много раз, мы добьемся того, что разница между площадью незаштрихованной части чертежа и 4/3 от SAOB станет меньше любой наперед заданной малой величины.