Теперь введем обозначение
Особый интерес представляет случай, когда отрезок единичной длинный принимается короче любого наперед заданного (фактически является минимальным неделимым, или же бесконечно малым). Тогда в современных обозначениях мы можем записать формулу для суммы рассматриваемого ряда как
Даже на рассмотренном примере видно, что метод Евдокса чересчур усложнен и совсем не так нагляден, как атомистический, но для такой простой задачи он, в принципе, кажется вполне применимым. Однако же с рядом 12 + 22 + 32…+
Разумеется, Архимед не использовал обозначение для интеграла, да и вообще всякую алгебраическую символику. Все приведенные формулы принимали у него вид теорем, в которых к ряду линий определенным образом прикладывались площади, имеющие избытком квадрат (аналог левой части формулы), а затем показывалось, что сумма полученных площадей составляет конкретную часть от какой-либо заранее заданной площади (аналог правой части формулы). В данном случае
Площадь параболы. Механическое доказательство Архимеда
Что касается механического определения площади сегмента параболы, то в этом случае Архимед воспользовался открытым им же законом рычага. Исследуемый сегмент мысленно подвешивался на одном плече симметричных (AO = OQ) весов так, чтобы ось параболы шла вертикально, а край плеча Q совпадал с одним из концов сегмента, тогда как другой конец сегмента R находился бы строго под точкой опоры O. На то же самое плечо весов подвешивается треугольник QRE, причем QE должна быть касательной к параболе. Основание QR делится на равные участки, проводятся вертикальные линии, а затем из Q строятся прямые, проходящие через точки пересечения вертикальных линий и параболы.
Далее, пользуясь свойствами подобия, Архимед показывает, что каждая из длинных вертикальных трапеций может быть уравновешена соответствующей огибающей параболу короткой трапецией, подвешенной в точке A. В самом деле, каждая большая трапеция во столько раз длиннее соответствующей малой, во сколько плечо AO длиннее расстояния до точки подвеса этих трапеций. Если обратиться к чертежу, то уже на примере самого правого треугольного кусочка должно быть понятно, что плечо AO необходимо слегка укоротить, однако, при разделении треугольника QRE на очень большее число трапеций это укорочение стремится к нулю. Одновременно с этим — короткие трапеции начинают стремиться к точному повторению формы параболы.
Иными словами, треугольник QRE может быть, по сути, уравновешен набором грузов (которые в сумме составляют параболический сегмент), подвешенным в точке A. В таком случае, как уже было известно, вес этого набора грузов (сегмента параболы) должен равняться 1/3 от веса уравновешиваемого треугольника. Последний факт почти очевиден, если вспомнить, что центр масс треугольника лежит в точке пересечения медиан, а сама эта точка делит медианы в отношении 1:2, то есть отсекает треть медианы от соответствующего основания (в нашем случае — от основания RE). Иными словами, центр масс треугольника лежит на 1/3 плеча OQ, и может быть поэтому уравновешен третью своего веса на плече AO. Поскольку вес грузов справа равен 1/3 от веса треугольника, то и их площадь должна составлять 1/3 от его площади.