Для тех, кто желает прослыть настоящим мудрецом, Архимед приводит дополнительное условие: во-первых, общее количество белых и тёмных быков представляет собой квадратное число, а, во-вторых, общее количество пёстрых и рыжих быков — треугольное число. В такой постановке задачу удалось решить лишь в XX веке с помощью компьютера. Суммарное число голов скота в данном случае выражается числом из 206 545 десятичных знаков.
Мы не знаем, получилось ли у Эратосфена и Аполлония либо у кого-нибудь другого справиться с полной задачей, но, вероятнее всего, решения не было даже у самого Архимеда. В то время просто отсутствовали способы хотя бы обозначить числа таких больших порядков, не говоря уже о вычислениях.
Неизвестно, каким образом Аполлоний сделал все свои открытия. Его книги написаны ясно и логически строго, но вот понять ход мыслей непросто — он полностью сокрыт за виртуозными построениями геометрической алгебры. Нигде не указывается, как именно автор пришел к необходимости делать именно такие построения, а не какие-либо иные. Вероятно, как и в случае с Архимедом, использовался какой-то упрощенный метод математического анализа, чтобы заранее понимать, к какому результату необходимо прийти. Хотя работы Аполлония активно изучались и комментировались, но его исследования не получили, да и не могли получить, почти никакого развития. Конические сечения применялись античными, а затем и мусульманскими учеными в основном для решения кубических уравнений, а также в оптике параболических зеркал. Все это не имело особого практического значения. Лишь в XVII веке, когда Ферма и Декарт создали аналитическую геометрию, теория конических сечений получила, наконец, свое развитие в работах Галилея, Кеплера и Ньютона.
Математика в римский период
Удивительный расцвет греческой геометрии в III веке до нашей эры происходил на фоне общего упадка классической культуры. Птолемеи и Аттал I смоги обеспечить относительно спокойную жизнь в своих столицах и организовать благодатные условия для плодотворной работы придворных ученых, которые не столько приносили реальную пользу, сколько развлекали царей и тешили их самолюбие. По традиции считалось, что достойных правитель должен быть сведущ в философии, поэтому правители эллинистической эпохи иной раз действительно старались приобщиться настоящей мудрости, однако же, будучи, абсолютными властителями своих земель, не допускали никакого излишнего вольнодумства и почти всегда оказывались падкими на лесть и суеверия. Развиваться могла лишь полностью оторванная от реальной жизни теоретическая математика, а у практика-Архимеда не нашлось ни последователей, ни учеников. Далее началось неминуемое угасание и увядание — сочинения Евклида, Архимеда и Аполлония стали каноническими на два тысячелетия. Какие-то геометрические исследования касались теперь лишь частных и специальных вопросов (например, придумывались новые способы решения проблемы удвоения куба), но в целом новые математики лишь комментировали и дополняли классические тексты, даже не пытаясь двигаться дальше.
С началом II века до нашей эры в Средиземноморье началась эпоха господства римлян, которые пренебрежительно относились ко всякой теоретической науке, а математику считали полезной лишь потому, что она приносила пользу в военном планировании, строительстве или землемерии. Сложно найти аргументы против подобной точки зрения: даже большая часть теорем Евклида, не говоря уже об открытиях Архимеда или свойствах конических сечений, никак не могли быть применены на практике, поскольку не существовало реальных задач, требующих столь изощренных и точных решений. Геометрия греков представляла собой скорее часть их культуры, чем науку в нашем современном понимании, а Рим считал себя вправе не уважать обычаи завоеванных народов, ведь они не помогли им сохранить свободу, то есть — оказались бесполезны. Поэтому нам неизвестен ни один выдающийся математик-римлянин, а вся оригинальная геометрия латыни представляет собой справочники для землемеров, содержащие упрощенные формулы с варварскими приближениями.
Разумеется, талантливые и даже выдающиеся эллины продолжали рождаться, причем даже в римскую эпоху их было не мало. Старые философские школы обучали всех желающих (и готовых заплатить), а египетская Александрия еще много веков оставалась центром учености и мудрости. Однако же все новые математики являлись лишь эпигонами, пытающимися систематизировать и приспособить наследие прошлого под текущие нужды. Кстати, это у них неплохо получалось.