Хотя Гильберт с готовностью принял должность профессора в Гёттингене, его беспокоили две стороны нового положения. Кёте здесь не была счастлива. Общество Гёттингена, хотя для её мужа и более интересное в научном смысле, не выказывало того дружелюбия, к которому она привыкла в Кёнигсберге. Строго соблюдаемая разница в рангах отделяла профессоров от доцентов и студентов старших курсов. Несмотря на свою доброту, Клейн держал Гильберта, как и остальных, на некотором расстоянии. Его жена (дочь философа Гегеля) была очень тихой женщиной, непохожей на тех, кто окружает себя большой компанией. Дом Клейна на улице Вильгельма Вебера, 3 — большой, квадратный, внушительный, с бюстом Юпитера на лестнице, ведущей в кабинет хозяина, — уже тогда походил на здание института, которым он со временем стал. Для Гильберта «товарищество» и человеческая солидарность были необходимы для научного творчества. Так же, как и Кёте, он нашёл атмосферу Гёттингена весьма холодной.

Кроме того, поначалу Гильберта беспокоило, что он может не оправдать надежд, питаемых на его счет Клейном. Он понимал, что причиной его приглашения была вера в него. Перед отъездом из Кёнигсберга он писал Клейну: «Мои положительные достижения — которые мне известны на самом деле лучше, чем кому бы то ни было, — всё ещё очень скромны». В следующем письме он снова вернулся к этому и добавил с надеждой: «Что касается моей научной программы, то я надеюсь в конечном счёте сделать из теории идеалов полезное и общее орудие (применимое также для аналитических функций и дифференциальных уравнений), которое дополнит великое и многообещающее понятие группы». Потом он аккуратно зачеркнул это предложение и написал на полях: Я не писал этого.

Теперь в Гёттингене Гильберт сосредоточил свои усилия на своей части обзора по теории чисел для Германского математического общества, который он рассматривал как необходимую основу для своих надежд на будущее.

В Кёнигсберге Минковский почти сразу же получил назначение на место своего друга. «Всё произошло так быстро, что я ещё полностью не привык к своему поразительному счастью. Во всяком случае, я знаю, что за всё это я должен благодарить только тебя. Увидишь, что я сброшу с себя свой кокон, и тогда никто не сможет попрекнуть тебя за твои хлопоты обо мне». Минковский был счастлив в своём новом положении — профессора теперь старались изо всех сил, чтобы описать достоинства своих дочерей, — однако, писал он, после отъезда Гильберта он «ни разу не прогуливался к яблоне».

Поддерживаемый Гильбертом, Минковский использовал преимущества своего звания профессора, чтобы прочитать курс лекций о теории бесконечности Кантора. Это было в то время, когда, по словам Гильберта, работа Кантора ещё была фактическим «табу» в кругах немецких математиков, частью из-за странности её идей, а частью из-за ранних атак Кронекера на неё. Хотя Минковский был поклонником математических работ Кронекера, он, как и Гильберт, сожалел о тех способах, которыми старик пытался распространять свои личные предубеждения на всю математику в целом.

«Позднейшие историки назовут Кантора одним из глубочайших математиков своего времени, — говорил Минковский. — Достойно крайнего сожаления, что критика со стороны одного из наиболее высокочтимых математиков, основанная не только на математическом содержании, способна омрачить его радость от своей научной работы».

В продолжение 1895 года письма между Гёттингеном и Кёнигсбергом становились всё более редкими.

«Оба мы молча стараемся раскусить крепкий и в действительности не очень вкусный орешек нашего общего обзора, — писал Минковский, возобновляя переписку, — у тебя, по-видимому, и зубы острее и энергии побольше».

Идея совместного обзора на самом деле не очень привлекала Минковского. «Я слишком поздно взялся за свою долю, — писал он с сожалением. — Теперь я вижу много мелких трудностей, от которых хорошо было бы избавиться». Его более интересовала своя книга по геометрии чисел. «Полное изложение моих исследований по непрерывным дробям достигло почти сотни печатных страниц, однако вполне удовлетворяющее заключение всё ещё отсутствует: смутно угадываемый характеристический критерий кубических иррациональных чисел... Но я не смог заняться этой проблемой, так как был занят работой над нашим обзором».

Гильберт же, с другой стороны, полностью посвятил себя обзору. Он был потрясён недавно обнаруженными глубокими связями между теорией чисел и другими областями математики. Ему казалось, что теория чисел должна занять ведущую роль в алгебре и теории функций. То, что это не случилось ранее и в более широких рамках, объяснялось, по его мнению, тем, что подход к этой теории был всегда хронологическим, а не понятийным. Теперь, используя язык полей алгебраических чисел, можно будет добиться определённого и неуклонного развития этой теории.

Перейти на страницу:

Похожие книги