Античные математики стали выстраивать аргументацию подобным же образом. Они выдвигали некоторый тезис, а затем начинали доказательство от противного: полагали данный тезис ложным и делали цепь логических выводов, которая приводила к невозможному следствию или противоречию с исходными данными — то есть сводили начальное допущение к абсурду. В результате не оставалось ничего иного, кроме как признать, что изначально выдвинутый тезис является верным.

В результате математика стала более строгой, но потеряла созидательную составляющую. Метод сведения к абсурду годился для проверки уже известных либо угаданных решений, но никак не помогал в нахождении новых истин. Боле того, со временем начали забываться даже старые способы получения уже существующих теорем, ведь в новых книгах они не рассматривались, а готовое решение давалось безо всякой связи с другими задачами.

Также под влиянием пифагорейцев и Платона из новой математики были изгнаны всякие прикладные вычисления и расчеты реальных длин, площадей и объемов. Все это стало уделом презираемого ремесла — логистики. Геометрия же превратилась в науку об отношениях (пропорциях), но не об измерениях.

<p>Математика и музыка</p>

Учение о пропорциях само по себе являлось достаточно мощным инструментом для познания мира. Важно было лишь найти ему верное применение. Так, судя по всему, первым физическим явлением, которое действительно серьезно изучили с математической стороны, оказалась музыка. В поздние времена эту заслугу стали приписывать Пифагору, но, вероятнее всего, исследования все же проводили его ученики и последователи. Они обратили внимание, что две одинаковые и равно натянутые струны лишь тогда издают совместное приятное звучание, когда их длины соотносятся как небольшие целые числа. Особенно, если отношения равны 1:2, 2:3 и 3:4. В первом случае, когда одна струна вдвое короче другой, обе они издают одну и ту же ноту в соседних октавах. В двух других случаях получаются различные, но гармонично звучащие ноты с интервалом соответственно в квинту или в кварту. Всё это, как говорят музыканты, идеальные созвучия — консонансы (или по-гречески «симфонии»). Если же длины струн имеют более сложные пропорции, либо вовсе не попадают в отношения целых чисел, то получаются менее приятные или даже резкие и режущие ухо звуки — диссонансы (диафонии). Кроме того оказалось, что консонансы достигаются в случаях, если одинаковые струны натягивать с помощью грузов, чьи веса соотносятся как квадраты небольших целых чисел.

Это было поразительное открытие: оказывается, естественные процессы (колебания струн) и ощущения прекрасного (реакция наших органов чувств) напрямую связаны с математикой. Сейчас мы понимаем, что дело тут в частоте колебаний каждой струны и совпадении обертонов, но пифагорейцы ничего из этого не знали. Суть рассматриваемого явления оставалась непонятной вплоть до XVII века, когда исследования французского священника и естествоиспытателя Марена Мерсена позволили, наконец, дать верное объяснение. Впрочем, всё это не помешало пифагорейцам уверовать в то, что вселенную можно описать математически. Такая, казалось бы, здравая идея, на деле получила весьма ограниченное воплощение — никто не считал нужным отыскивать в природе еще какие-либо виды числовых соотношений. Наоборот, математика оказалась на века крепко связана с музыкой, а всё мироустройство заведомо помещено в рамки простых числовых пропорций. Их пытались увидеть везде, где только можно, и любые результаты безжалостно подгонялись под «музыкальную гармонию». Такой сомнительный подход имел долгую жизнь и особенно сильно повлиял на астрономию, о чем мы поговорим в соответствующей главе.

<p>Платонизм в математике</p>

Вообще говоря, влияние Платона на геометрию (как и на всю философию в целом) носило сугубо реакционный характер. Сам он не проявил особых способностей в этой области, однако, с восторгом относился к математикам. По легенде над входом в Академию висело предупреждение «Не геометр да не войдет!» (этот текст, вероятно, носил во многом сословный характер, намекая и на то, что арифметика — удел простонародья и купцов, а не почтенных землевладельцев). Для Платона, считавшего геометрические истины врожденными нашей душе, математика стала основанием для всяческих мистических построений. В центре внимания его оказались правильные многогранники (не имеющие почти никакого реального значения), теория пропорций и учение о несоизмеримых величинах. Последний вопрос особо занимал Платона, считавшего постыдным общее невежество в этой области.

Самый талантливый математик Академии и ученик Платона по имени Теэтет открыл октаэдр и икосаэдр, а также доказал, что существует лишь пять правильных многогранников. Позже увлечение правильными многогранниками найдет отражение и в книгах Евклида.

Перейти на страницу:

Похожие книги