Общая цель Евклида заключалась в том, чтобы дедуктивно построить систему рассуждений на базе небольшого числа определений и аксиом. Для своего времени он блестяще справился с поставленной задачей: на две тысячи лет его работа стала настольной книгой для каждого европейского математика. Современному же читателю «Начала», скорее всего, покажутся сухим и переусложненным текстом, в котором полностью отсутствуют общие слова и авторские замечания, зато много повторений и непривычные термины. Методология Евклида не подразумевала никакой проверки исходных предположений, но текст «Начал» оказался настолько удачным, что принятые там аксиомы и постулаты считались единственно возможными вплоть до XIX века, когда Лобачевский, наконец, показал, что только наблюдение способно помочь нам определить каковы же они в действительности.

Структурно «Начала» разделены на 13 книг (глав), каждая из которых посвящена своему вопросу.

Книга I содержит основные определения, постулаты (допущения), аксиомы (интуитивно понятные положения) и предположения (задачи, где нужно что-либо построить, или теоремы, в которых требуется что-либо доказать). Особо большой интерес представляет пятый постулат Евклида, звучащий следующим образом: «Если прямая, пересекающая две прямые, образует внутренние углы суммой меньше двух прямых, то будучи неограниченно продолженными эти две прямые пересекутся с той стороны, где сумма углов меньше двух прямых».

Из данного утверждения непосредственно следует, что через не лежащую на какой-либо прямой точку, можно провести лишь одну прямую параллельную исходной. На отрицании именно этого положения и построена геометрия Лобачевского.

Другие четыре постулата Евклида почти банальны, поскольку гласят, что через две точки можно провести прямую, что всякая прямая не имеет концов, что вокруг любой точки можно описать круг, а все прямые углы равны между собой. Пятый же постулат, как видно, совсем не так прост. Необходимо признать большую прозорливость того грека (едва ли это был сам Евклид), который впервые осознал необходимость внести это нетривиальное положение в число обязательных допущений.

Предложения книги I начинаются с построения равностороннего треугольника на заданной стороне и заканчиваются теоремой Пифагора (безо всякого указания ее авторства), причем показывается именно равенство площадей квадратов, построенных на гипотенузе и катетах. Заметим заодно, что под равенством фигур Евклид всегда понимает именно равенство площадей, тогда как то, что считаем равенством мы, называлось у него «равенством и подобием».

II книга Евклида посвящена геометрической алгебре, то есть графическим вычислительным приемам, которые мы уже достаточно подробно рассмотрели в предыдущих главах. Напомним еще раз, что это был единственный известный грекам способ «работы с формулами», если не считать их словесного описания.

В III книге говорится о свойствах окружностей, хорд, касательных и построенных на них углов; IV книга посвящена правильным многоугольникам; V книга рассказывает о теории пропорций, учитывающей несоизмеримые величины (то есть приводит теорию Евдокса об иррациональных); в VI книге рассматриваются в основном задачи о площадях параллелограммов (здесь же приводится уже известный нам графический способ решить квадратное уравнение); книги VII–IX посвящены теоретической арифметике, причем затрагивают лишь натуральные числа; книга X рассматривает различные виды иррациональностей.

Книга XI посвящена основам стереометрии, а также тем телам, для вычисления объемов которых не требуется использовать предельный переход (то есть обращаться к математике атомистов). Поскольку для пирамиды, конуса и шара невозможно определить объемы (либо их отношения) без использования понятия бесконечно малых, то в XII книге Евклид решает эти задачи классическим методом исчерпывания: вписывает фигуры со всё увеличивающимся числом сторон, а затем сведением к абсурду показывает, что заранее известное ему решение является верным. Последняя XIII книга посвящена правильным Платоновым многогранникам.

Перейти на страницу:

Похожие книги